
Chapter 1

COMPLEXITY THEORY AND THE NO FREE

LUNCH THEOREM

Darrell Whitley,1 and Jean Paul Watson 2

1Department of Computer Science, Colorado State University , Fort Collins, CO, USA

2Sandia National Laboratories, Albuquerque, NM, USA

1. Introduction

This tutorial reviews basic concepts in complexity theory, as well as
various No Free Lunch results and how these results relate to compu-
tational complexity. The tutorial explain basic concepts in an informal
fashion that illuminates key concepts. “No Free Lunch” theorems for
search can be summarized by the following result:

For all possible performance measure, no search algorithm is better than
another when its performance is averaged over all possible discrete func-
tions.

Note that “No Free Lunch” is often referred to simply as NFL within
the heuristic search community (despite copyrights and trademarks held
by the National Football League).

No Free Lunch relates to complexity theory in as much as complexity
theory addresses the time and space costs of algorithms; complexity
theory is also concerned with key classes of problems, such as the class of
NP -Complete problems that are also of interest to researchers designing
search algorithms.

2. Complexity, P and NP

The complexity classes denoted by P and NP are the most famous
(or notorious) classes of problems in complexity theory. The problem
class P is the set of problems that can be solved in polynomial time on a
Deterministic Turing Machine. For current purposes, we can think of any
computer as a surrogate for a Turing Machine (except Turing Machines

2

are assumed to have infinite memory). The “P” stands for polynomial.
In practice, we generally think of P as representing those problems that
are tractable, i.e., problems that can be solved in reasonable computation
time (within one’s lifetime, for example).

The problem class NP is the set of problems that can be solved in
polynomial time on a Nondeterministic Turing Machine. The “NP”
stands for nondeterministic polynomial (not to be confused with Not
Polynomial). Nondeterminism is a bit strange. In a nondeterministic
machine, choices are allowed in the computation, so that some things
need not be computed. In effect, the computation itself becomes a search
tree. Each path in the tree represents a possible solution, but only
certain paths yield an actual solution. We say that a problem is in NP
if this search tree is polynomial in height, while the number of nodes
in the search tree might be exponential. Thus, if we could explore all
computational paths in parallel, we arrive at a solution in polynomial
time. Alternatively, if we “magically” make the right choice at each
decision node in the tree, then we again arrive at the desired solution in
polynomial time. If we can deterministically find a path to a solution in
polynomial time in every case, then the problem is in P . All problems
in P are also in NP . Another characteristic of the class NP is that
the correctness of solutions can be verified in deterministic polynomial
time. Note that this is true, because if we have the solution in hand, we
then know how to make the right choice at each decision node without
needing any magical guidance.

Problems in NP that are not known to be in P are characterized
by an algorithm gap. An algorithm gap exists when the proven diffi-
culty of a problem (or a set of problems) has lower complexity than the
best known algorithms for solving that problem. The complexity of the
problem itself is algorithm independent and is a bound from below: the
problem can be proven to be at least this hard (but might be harder).
The complexity of the algorithm is a bound from above: the best known
algorithms solves the problem this fast (but might be done faster).

The complexity of sorting has been proven to be O(N lg N), thus no
algorithm can sort faster than O(N lg N) in the worst case. Of course,
there exist algorithms that sort in O(N lg N) time, so sorting is said to
be a closed problem because it does not have an algorithm gap.

If an algorithm sorts faster than O(N lg N) time, then that algorithm
has been designed to work on special subclasses of problems: for exam-
ple, if we know that we are sorting integers from ranging from 1 to 1000,
and the expected distribution of the integers is uniform, we can use a
bucket sort and sort in linear (i.e., O(N)) time.

Complexity and No Free Lunch 3

In contrast, an algorithm gap does exist in the well-known Travel-
ing Salesman Problem. Here, the only algorithm guaranteed to locate
an optimal solution is, in effect, enumeration. Thus, the best known
method in the worst case has complexity O(N !) for an N city problem.
Yet, no one has proven that the inherent complexity of the Traveling
Salesman Problem is worse than O(N), the amount of time required for
a nondeterministic Turing Machine to solve the problem. And note that
a solution can be verified in polynomial time. If someone has a solution
that is claimed to have a particular evaluation, then that evaluation can
be verified in O(N) time–which is polynomial, of course.

Can all the problems that are solved by a Turing Machine in non-
deterministic polynomial (NP) time be solved by a Deterministic Tur-
ing Machine using another, more clever algorithm in polynomial time?
What we are really asking is whether the complexity class P = NP . The
answer is unknown and is considered to be one of the most important
theoretical questions in Computer Science. It is an equally important
question in Operations Research. While the answer is unknown, it is
widely thought that P 6= NP .

Researchers have identified a very important subset of the class NP
known as the class NP -Complete. A problem, R, is NP -Complete if
(1) it is NP -hard and (2) R ∈ NP . Informally, a problem is NP -hard
if it is at least as hard as any other problem in NP . More formally, a
problem R is NP -hard if there exists an NP -Complete problem R0 such
that every instance of R0 can be “reformulated” into an instance of R
in deterministic polynomial time. R must be just as hard as R0 since R
in some sense “includes” R0.

In a famous theorem, Cook (1971) established that Boolean Satisfi-
ability is NP -Complete by showing it is in NP and by showing that
every problem in NP can be expressed as a Boolean Satisfiability prob-
lem (also just called “SAT”). Of course SAT is a member of the set
of NP problems: the nondeterministic Turing Machine just selects the
right assignment to the Boolean variables to make the expression true,
if it is possible to do so.

Other problems in NP have been shown to be NP -Complete by show-
ing that every SAT problem can be converted into an instance of that
particular problem class. Thus, every instance of SAT can be converted
into an instance of the 3-CNF-SAT problem, which can an be converted
into an instance of a Hamiltonian Circuit problem, which can an be con-
verted into an instance of the Traveling Salesman problem. This means
all of these problems are NP -hard. Showing that they are all also in the
class NP makes them NP -Complete. Technically, to be NP -Complete,
a problem must be a decision problem. A decision problem is a problem

4

that has a yes or no answer. Therefore, the Traveling Salesman Problem
is “NP -Complete” when expressed as a decision problem (i.e., Is there
a tour with length ≤ X?), but the Traveling Salesman Problem is still
said to be “NP -hard” when expressed as an optimization problem.

Given the interrelated nature of the NP -Complete problems, if re-
searchers ever discover a polynomial-time algorithm for any NP -Complete
problem, then it would follow that every problem in NP could be solved
in polynomial time. In an abstract sense, this means that all prob-
lems in the NP -Complete are all of comparable difficulty, and that the
NP -Complete are the most difficult problems in the set made up of all
problems in NP .

Complexity, Search and Optimization

Since we don’t know how to compute the solution to NP -hard prob-
lems in polynomial time, we have to settle for approximate solutions
(which sometimes can be computed exactly in polynomial time) or use
search methods to find the best solutions possible. It can be useful to
think of these search methods as exploring the decision tree that is mag-
ically navigated by a Nondeterministic Turing Machine. The solutions
that are found using search methods often are not optimal, but finding
sufficiently good solutions can be important for many applications.

A basic distinction can be made between search problems that are
discrete versus problems that are continuous. This distinction can also
be related to the difference between integers and real-valued numbers.
If we ask how many integers there are in the (inclusive) interval between
1 and 10, the answer is obviously 10 different and discrete values. But
if we asked how many real-valued numbers there are between 1 and 10,
the answer is infinitely many.

The Nondeterministic Turing Machine is clearly solving a discrete
problem, because there are a fixed number of decisions that must be
made to reach an optimal solution. By definition, the number of deci-
sions that must be made by the Nondeterministic Turing Machine must
be polynomial if it is solving an NP -hard problem.

Some problems cannot be solved in polynomial time by a Nondeter-
ministic Turing Machines and therefore are not in NP ; we can loosely
think of such problems as requiring exponential time, although in com-
plexity theory one must worry about both space (memory) and time and
balance trade-offs between space and time costs.

Consider a parameter optimization problem such that there is
a function f that takes k parameters as inputs and returns a single
value that evaluates the usefulness or goodness of those k parameters.

Complexity and No Free Lunch 5

The space of possible inputs is known as the domain and the space of
possible outputs as the range or co-domain of the function. For example,
we might have a parameter optimization problem that used temperature
and pressure as two input control parameters for a process that produces
some material (e.g. paper), where the output of the function might be
the cost of the material, or some measurement of its quality.

If a parameter can be assigned any continuous real-valued number,
then the input space is theoretically infinite. We will limit our attention
to problems that are discrete such that the domain and therefore the co-
domain are finite. Discrete parameter optimization problems are part
of a larger set of discrete problems referred to as combinatorial op-

timization problems. Combinatorial optimization problems include
many different types of problems, such as scheduling and resource allo-
cation, as well as problems in graph theory and Boolean logic.

For example, we might have a scheduling problem where we want to
optimize the order in which tasks are carried out. The goal might be
to minimize total processing time, or to maximize work done per unit
of time. For N tasks, there could be N ! ways to order those tasks. Or,
we might want to assign truth values (0 or 1) to a Boolean expression,
in which case there are 2k assignments if there are k Boolean variables
in the expression. In the first case, an input could be a permutation
of tasks of length N and the evaluation might be how long it takes to
process all of the N tasks. In the second case, an input might be a bit-
string of length k representing the assignments made to the k Boolean
variables, and the output might be a true or false (0 or 1) evaluation
of the overall Boolean expression. For classic NP -hard problems, the
search space is typically modeled in a general way so that the search
space is exponentially large in relationship to the size of an input.

Parameter optimization problems can also be discretized. For exam-
ple, a single input parameter can be restricted to a value between 1 and
100 (inclusive) where we only consider values that are increments of 0.01.
In this case, there are only 10,000 possible assignments for that particu-
lar input. If all of the parameters of a parameter optimization problem
are discretized in this way, then the overall search problem is discrete
as well. There are a number of reasons that one might want to look
at parameter optimization problems as discrete search spaces. In some
cases, sensors for the inputs and/or outputs have limited precision and it
does not make sense to represent and reason about extremely high pre-
cision numbers–we simply can’t measure the world that precisely. And,
in general, as soon as anything is represented in a computer program
it is discrete. Infinite precision is a fiction, although it is sometimes a
useful fiction. But as soon as we decide to represent a parameter using

6

a fixed-length floating point representation, the optimization problem is
discrete.

This leads to the following observation. If the set of possible inputs
is discrete, we can enumerate the set of inputs and label each possi-
ble input with a unique integer. We will also sort the inputs in some
principled manner, so that the ith possible input is uniquely identified.
This is a familiar concept in complexity, since it allows us to count all of
the inputs. Thus, any particular instance of a discrete search problem
using any given discrete representation can be abstractly modeled by a
function

f(i) = j

where i is an integer that labels the ith input (i.e., the i element of
the domain) and j is a member of the set of values that make up the
co-domain. This perspective also provides a general foundation for dis-
cussing the concept of “No Free Lunch.”

3. No Free Lunch

In 1995, a paper by David Wolpert and William Macready caused
a good deal of excitement in the search community. Their technical
report “No Free Lunch Theorems for Search” presents proofs that can
be summarized by the following No Free Lunch result:

For all possible performance measure, no search algorithm is better than
another when its performance is averaged over all possible discrete func-
tions.

First, note that we only consider discrete functions. A performance
measure includes any measurement of the quality of the solution (or
set of solutions) found after sampling some fixed number of points in
the search space, or how long it takes to find a solution of a particular
quality. It is also implied that a performance measure is taken over the
set of domain and associated co-domain values that have been sampled
so far.

An updated version of the original report appeared in 1997. A key
assumption behind this result is that resampling is ignored: this means
that if a search algorithm samples point i and evaluates the objective
function f(i) then that point is never sampled again. In reality, heuris-
tic search algorithms “focus” search toward particular regions of the
search space: in other words, a focused search is one that spends more
time sampling points that are near to one another in the search space.
Consequently, a focused search is one that is more likely to resample
previously visited points. Search algorithms that are more likely to re-

Complexity and No Free Lunch 7

sample points in the search space than others are in some sense “worse”
than algorithms that resample less.

One of the most basic and least intelligence forms of search is random
enumeration. Random enumeration means that we sample the search
space randomly without replacement; this can be done using clever book-
keeping, or simply by keeping a list of visited points so that none are
evaluated again. In practice, random sampling is typically unfocused,
only a limited amount of the search space can be sampled, and it is rea-
sonable to allow sampling with replacement because resampling is un-
likely. When random sampling is used as a search algorithm, it provides
a minimal baseline against which the performance of heuristic search
algorithms can be judged. Clearly, we would expect any useful heuris-
tic search algorithm to outperform random enumeration. However, a
startling and powerful consequence of No Free Lunch is that no heuris-
tic search algorithm is better than random enumeration when compared
over all possible discrete functions.

Useful search algorithms do not exhaustively enumerate the entire
search space. Wolpert and Macready (1995, 1997) model a search algo-
rithm as a procedure that searches for “m” steps. However, this does
not restrict any of the No Free Lunch results.

Another issue relating to No Free Lunch involves deterministic ver-
sus stochastic search algorithms. Some algorithms make determinis-
tic decisions, such as a steepest ascent local search algorithm: when
started from the same point, steepest ascent always yields the same so-
lution. Genetic Algorithms are often implemented as largely stochastic
algorithms–meaning that the search involves many random or stochastic
decisions and that different runs will often produce different solutions.
Wolpert and Macready present arguments showing that the No Free
Lunch theorems hold for both stochastic and deterministic search al-
gorithms. Radcliffe and Surry (1995) also point out that in practice
stochastic algorithms typically employ pseudo-random number genera-
tors. Thus, if we include the random number generator and initial seed
in the specification of the search algorithm, then these “stochastic” al-
gorithms, in effect, are also deterministic.

Immediately following its introduction, researchers had two general
reactions to the No Free Lunch results.

Reaction 1: Many researchers simply dismissed No Free Lunch, ar-
guing that results concerning the set of all possible discrete functions
are not applicable in the real world because this set is not representa-
tive of real-world problems. Some researchers pointed out that the set
of all possible discrete functions is infinitely large and most functions
are incompressible in that there is not a representation whose size is

8

significantly less than the size of the function when fully enumerated.
For example, if there are N values in the co-domain of a function, then
writing down all of these values requires N log2(N) bits (i.e., N values,
log2(N) bits per value). In effect, this representation of the function is
just a look-up table where the ith entry is the co-domain value associated
with f(i). If there exists no representation of a function that uses less
than O(N log2(N)) bits, then that function is incompressible. Even if
an evaluation function only returns 0 or 1, it still requires O(N) bits to
construct a look-up table or to enumerate the function; in this case, the
look-up table is still exponentially large when N is exponentially large
in relationship to the size of an input string to the evaluation function.

Of course, there are more random functions than non-random func-
tions (English 2000a). Furthermore, most standard textbooks on com-
putability discuss the well-known result that the set of all possible func-
tions is uncountably infinite (as can be shown using diagonalization argu-
ments), while the set of all possible programs (which are just bit-strings
at the lowest level) is only countably infinite (Sudcamp 1997). So the
set of all possible cost functions that can be implemented on a computer
is a tiny subset of the set of all possible functions. Thus, the space
of all possible discrete functions is largely composed of incompressible
functions. Given these observations, “No Free Lunch is No Big Deal”
seemed to be the conclusion of this point of view.

Reaction 2: The other reaction to No Free Lunch was to acknowledge
that researchers trying to develop the best possible algorithm for a par-
ticular application typically need to leverage extensive problem-specific
knowledge. Consequently, the No Free Lunch result seemed to be an
intuitive affirmation of the idea that there are no general-purpose search
methods (at least none that are very effective) and that the business of
developing search algorithms is one of building special-purpose methods
to solve application-specific problems. This point of view echos a refrain
from the Artificial Intelligence community: “Knowledge is Power.”

Of course, there is truth in both of these views. It has taken several
years for the research community to gain a deeper understanding of
No Free Lunch. These investigations have led to some surprising and
even fruitful results along the way. In 1998 Joe Culberson published
an “algorithmic view” of No Free Lunch that added perspective to the
debate; Culberson makes 2 important points.

First, all of this looks at search as a blind process. This means that
the only information we have is the evaluation of particular points in
the space. We do not have information about what a solution might
look like or information about how the evaluation is constructed that
might allow us to search more intelligently. Blind search is extremely

Complexity and No Free Lunch 9

weak. Using an “adversarial argument” we can think of blind search as
the process of asking an adversary to sample a point of some objective
function and then return an answer. In the space of all possible discrete
functions, however, the adversary is free to return any value whatsoever
without regard to those values of the search space that have already
been examined. In the worst case, sampled points from the search space
tell us nothing about the remaining points in the search space.

Second, search is often not blind. If we construct an algorithm for the
Traveling Salesman Problem, for example, we often do exploit application-
specific operators and representations. But this does not mean that we
completely give up generality; our algorithms are designed to solve a
particular problem, but should be general enough to solve different in-
stances of that problem.

Radcliffe and Surry (1995) first formalized the idea that we can also
include representations under No Free Lunch. That is, when we consider
all possible representations of a function, No Free Lunch still holds: No
search algorithm is better than another when applied to all possible
representations of a function. In effect, a representation just transforms
one function into another.

Not surprisingly, No Free Lunch also holds when comparing the set
of possible representations under Gray codes and Binary bit encodings.
However, Whitley and Rana (1997) pointed out that if one selected par-
ticular subsets of problems of bounded complexity, then No Free Lunch
no longer holds; Whitley 1999 provide proofs of this related to binary
representations. Droste et al. (1999) also made similar observations, in-
dicating that one can define sets of reasonable and interesting functions
where one algorithm can consistently outperform another.

If we go back in time, No Free Lunch observations were made by Greg
Rawlins at the Foundations of Genetic Algorithms (FOGA) workshops
in 1990 and 1992. In the preface to the proceedings of the 1990 FOGA
workshop Rawlins (1991) makes the following observations:

[I]t is sometimes suggested that GAs [Genetic Algorithms] are universal
in that they can be used to optimize any function. These statements
are true in only a very limited sense; any algorithm satisfying [these]
claims can expect to do no better than random search over the space of
all functions. (Rawlins 1991, pp 7.)

It is now apparent that for a fixed universal algorithm, restricted to [bit]
strings ... over the set of all possible domain functions ... it does not
matter which encoding we use, since for every domain function which
the encoding makes easier to solve there is another domain function
that makes it more difficult to solve. Thus, changing the encoding does
not affect the expected difficulty of solving a randomly chosen domain
functions.

10

Equivalently, assume that we have a fixed domain function f and sup-
pose that we choose the encoding, e, at random. ... Then, no search
algorithm can expect to do better than random search, since no infor-
mation is carried by e about f , except that for each string there is a
value (Rawlins 1991, pp 8.)

Rawlins anticipated several of the consequences of No Free Lunch.
Nevertheless, it was Wolpert and Macready who not only provided the
first proof of No Free Lunch, but also explored many of the ramifications
of the No Free Lunch Theorem.

No Free Lunch: Variations on a Theme

Two other common variants of NFL are as follows:

The aggregate behavior of any two search algorithms is equivalent when
compared over all possible discrete functions.

The aggregate behavior of all possible search algorithms is equivalent
when compared over any two discrete functions.

At the root of these observations is another, more concise result. Con-
sider any algorithm Ai applied to function fj. Let Apply(Ai, fj ,m) rep-
resent a “meta-level” algorithm that outputs the order in which Ai visits
m elements in the co-domain of fj after m steps. For every pair of algo-
rithms Ak and Ai and for any function fj, there exists another function
fl such that

Apply(Ai, fj ,m) ≡ Apply(Ak, fl,m).

The equivalence operator ≡ denotes that the ordered sequence of co-
domain values that is return by “Apply” will be equivalent. We could
interpret this result in another way. For every pair of functions fj and
fl and for any algorithm Ai, there exists another algorithm Ak such
that Apply(Ai, fj ,m) ≡ Apply(Ak, fl,m). In fact, if we consider the
algorithms and the functions as variables that are supplied to the Ap-
ply function, then when any 3 of the “variables” are known, the 4th is
immediately determined.

This also implies that we can talk about No Free Lunch in a much
smaller context: for example, we can talk about any 2 search algorithms
applied to exactly 2 carefully chosen paired functions.

This perspective on No Free Lunch has some rather counterintuitive
implications, which may be deeper and more profound than the gen-
eral NFL result. Consider a “Best-First” version of steepest ascent local
search which restarts when a local optimum is encountered. Also con-
sider a “Worst-First” steepest ascent local search, also with restarts. We

Complexity and No Free Lunch 11

incorporate restarts so that these algorithms continue searching for an
arbitrary number of steps. Then, for every function fj there exists a
function fl such that:

Apply(Best-First, fj,m) ≡ Apply(Worst-First, fl,m).

Virtually all researchers would accept that Best-First local search is
a reasonable search algorithm and that it is useful on many real world
problems. In other words, there is a subset of problems where Best-First
search is effective, relative to some performance measure. But there is
a corresponding set of functions where Worst-First local search search
is equally effective. What do these functions look like? They probably
are “structured” in some sense, and might be compressible. Also note
that if we are minimizing a function, then a Worst-First local search
is one that simply maximizes at each step, instead of minimizing. On
the other hand, it seems reasonable that we might want to maximize
one function and minimize another function. Why is Best-First search
generally viewed as a reasonable algorithm and Worst-First as an un-
reasonable algorithm? This is a nagging question for which, at least
formally, there are currently no good answers.

No Free Lunch and Permutation Closure

As has been noted, the set of all possible discrete functions is infinitely
large. One easy way to see this is by considering all the functions that
take K inputs: since K could be any integer from 1 to infinity, there
must be infinitely many discrete functions. But even if there are exactly
2 inputs, the number of evaluations could be chosen from an infinite set of
different possible values, resulting in infinitely many discrete functions.

Whitley et al. (1997) first explored the idea that permutations could
be used to represent both algorithms and functions–and thus produce
an NFL result over a finite set. This was further explored by Whitley
(2000). Consider the following small example. Assume that the co-
domain of our objective function consists of the set of values {A,B,C}.
Let the permutation < A,B,C > represent a canonical ordering of these
values. We can start by considering bijective functions, those that are
one-to-one and onto: an important implication of this is that each value
in the co-domain is unique. To construct a function, we need to as-
sign values to f(1), f(2) and f(3). Exactly 3! bijective functions can
be constructed given 3 possible co-domain values. Additionally, only
3! behaviors are possible for any search algorithm, assuming that an
algorithm does not resample points. Let an algorithm’s behavior be
represented by a permutation over the set of numbers {1, 2, 3} which

12

will serve as indices into the canonical permutation of co-domain values
{A,B,C}. Let si be the ith value sampled by a search algorithm. Thus,
the permutation < 2, 1, 3 > defined with respect to the canonical order-
ing < A,B,C > represents a search algorithm whose behavior can be
described by the following sampling behavior s1 = B, s2 = A, s3 = C.
Note that we don’t need to specify a particular function to talk about
behavior, we just need to define the co-domain values. In the following
table, we enumerate all possible permutations over all possible functions
over the co-domain {A,B,C} as well as all possible permutations over
the set of algorithm behaviors over the set of indices denoted by {1, 2, 3}.

POSSIBLE POSSIBLE

BEHAVIORS FUNCTIONS

B1: < 1, 2, 3 > F1: < A, B, C >

B2: < 1, 3, 2 > F2: < A, C, B >

B3: < 2, 1, 3 > F3: < B, A, C >

B4: < 2, 3, 1 > F4: < B, C, A >

B5: < 3, 1, 2 > F5: < C, A, B >

B6: < 3, 2, 1 > F6: < C, B, A >

The implications of No Free Lunch start to become clear when one
asks basic questions about the set of behaviors and the set of functions.

If we apply any two sets of behaviors to any two functions, each be-
havior generates a set of 3! possible search behaviors which is the same
as the set of all possible functions. If we apply all possible search behav-
iors to any two functions, for each functions, we again obtain a set of
behaviors which, after the indices are translated into co-domain values,
is the same as the set of all possible functions.

We need to be careful to distinguish between algorithms and their
behaviors. There exist many algorithms (perhaps infinitely many) but
once the values of the co-domain are fixed, there are only a finite number
of behaviors.

Schumacher (2000) and Schumacher, Vose and Whitley (2001) sharp-
ened the No Free Lunch theorem by formally relating it to the permu-

tation closure of a set of functions. Let X and Y denote finite sets and
let f: X −→ Y be a function where f(xi) = yi. Let σ be a permutation

Complexity and No Free Lunch 13

such that σ : X −→ X . We can permute functions as follows:

σf(x) = f(σ−1(x))

Since f(xi) = yi, the permutation σf(x) can also be viewed as a
permutation over the values that make up the co-domain (the output
values) of the objective function.

We next define the permutation closure P (F) of a set of functions F .

P (F) = {σf : f ∈ F and σ is a permutation}

Informally, P (F) is constructed by taking each function in F and re-
ordering its co-domain values to produce a new function. This process is
repeated until no new functions can be generated. This produces closure
since every re-ordering of the co-domain values of any function in P (F)
will produce a function that is already a member of P (F). Therefore,
P (F) is closed under permutation. This provides the foundation for the
following result.

THEOREM: The No Free Lunch theorem holds for a set of functions if
and only if that set of functions is closed under permutation.

Proofs are given by Schumacher et al. (2001). Intuitively, that NFL
should hold over a set closed under permutations can be seen from Cul-
berson’s adversarial argument: any possible (remaining) value of the co-
domain can occur at the next time sample. Proving that the connection
between algorithm behavior and permutation closure is an if and only if
relationship is much stronger than the observation that No Free Lunch
holds over the permutation closure of a function. But if every remaining
value is not equally likely at each time step, the set of functions we are
sampling from is not closed under permutation and No Free Lunch does
not hold. Similar observations have also been made by Droste, Jansen
and Wegener (2002).

It is useful to view the permutation closure of a function as a table,
where each row of the table is a permutation representing a function.
Each row in the table also corresponds to the behavior of some opti-
mization algorithm on some function. The behavior of an optimization
algorithm with respect to some objective function describes the order in
which the optimization algorithm samples the values that make up the
co-domain of the objective function. Schumacher et al. (2001) refer to
this as the “performance vector.”

This table representation makes it clear when NFL results hold and
makes it clear why making a general declaration that one algorithm is
better than another is in some sense meaningless.

Consider the following table representing the permutation closure over
a function defined over a co-domain of 3 values.

14

< 1, 2, 3 >

< 1, 3, 2 >

< 2, 1, 3 >

< 2, 3, 1 >

< 3, 1, 2 >

< 3, 2, 1 >

Each column of the table represents the set of possible behaviors at a
particular time step; the rows represent all possible performance vectors.
But each column is identical in its composition. The notion of robustness
implies that some algorithm yields relatively good performance over a
broad range of problems compared to another algorithm. This would
suggest that relatively good solutions are found within some fixed (e.g.
polynomial) number of time steps. Yet, if NFL holds over a set of
problems, the set of co-domain values returned over all functions in the
permutation closure is identical at each time step. Thus, not only are
all measures of performance the same after “m” steps; every step of the
search yields exactly the same set of co-domain samples when behavior
is aggregated over all possible functions in any permutation closure.

This means we can now make a more precise statement about the
“zero-sum” nature of No Free Lunch. If algorithm K outperforms algo-
rithm Z on any subset of functions denoted by β, then algorithm Z will
outperform algorithm K over P (β)−β. This means that No Free Lunch
theorems for search apply to finite sets. These sets can in fact be quite
small.

English (2000) first pointed out that NFL can hold over sets of func-
tions such as needle-in-a-haystack functions. A needle-in-a-haystack
function is one that has the same evaluation for every point in the space
except one; in effect, searching a needle-in-a-haystack function is neces-
sarily random since there is no information about how to find the needle
until after it has been found.

In the following example, NFL holds over just 3 functions.

f = 〈0, 0, 3〉

P (f) = {〈0, 0, 3〉, 〈0, 3, 0〉, 〈3, 0, 0〉}

Clearly, NFL does not just hold over sets that are incompressible.
All needle-in-a-haystack functions have a compact representation of size
O(lg N), where N = | X |. In effect, the evaluation function needs to
indicate when the needle has been found and return a distinct evaluation.

Complexity and No Free Lunch 15

Generally, we like to construct evaluation functions that are capable
of producing a rich and discriminating set of outputs: that is, we like to
have evaluation functions that tell us point i is better than point j. But
it also seems reasonable to conjecture that if NFL holds over a set that
is compressible, then that set has low information measure.

Schumacher et al. (2001) also note that the permutation closure has
the following property.

P (F ∪ F ′) = P (F) ∪ P (F ′)

Given a function f and a function g, where g /∈ P (f), we can then
construct 3 permutation closures: P (f), P (g), P (f ∪ g). For example,
this implies that NFL holds over the following sets which are displayed
in table format:

Set 1: {< 3, 0, 0 >,

< 0, 3, 0 >, Set 3: {< 3, 0, 0 >,

< 0, 0, 3 >} < 0, 3, 0 >,

< 0, 0, 3 >,

Set 2: {< 1, 3, 2 >, < 1, 3, 2 >,

< 2, 1, 3 >, < 2, 1, 3 >,

< 2, 3, 1 >, < 2, 3, 1 >,

< 3, 1, 2 >, < 3, 1, 2 >,

< 3, 2, 1 >} < 3, 2, 1 >}

We can also ask about NFL and the probability of sampling a particular
function in P (f). For NFL to hold, we must insist that all members of
P (f) for a specific function f are uniformly sampled. Otherwise, some
functions are more likely to be sampled than others, and NFL breaks
down. For NFL to hold over P (g) the probability of sampling a function
in P (g) must also be uniform. But Igel and Toussaint (2004) point
out that we can also have a uniform sample over P (g) and a (different)
uniform sample over P (f) and NFL still holds. Thus, sampling need not
be uniform over P (f ∪ g).

Free Lunch and Compressibility

Whitley (2000) presents the following observation. (The current form
is expanded to be more precise.)

Theorem: Let P (f) represent the permutation closure of the function f .
If f is a bijection, or if any fixed fraction of the co-domain values of
f are unique, then |P (f)| = O(N !) and the functions in P (f) have a
description length of O(N lg N) bits on average, where N is the number
of points in the search space.

16

The proof, which is sketched here, follows the well known proof demon-
strating that the best sorting algorithms have complexity O(N lg N). We
first assume that the function is a bijection and that |P (f)| = N !. We
would like to “tag” each function in P (f) with a bit string that uniquely
identifies that function. We then make each of these tags a leaf in a
binary tree. The “tag” acts as an address that tells us to go left or right
at each point in the tree in order to reach a leaf node corresponding to
that function. But the “tag” also uniquely identifies the function. The
tree is constructed in a balanced fashion so that the height of the tree
corresponds to the number of bits needed to tag each function. Since
there are N! leaves in the tree, the height of the tree must be O(lg N !)
= O(N lg N). Thus O(N lg N) bits are required to uniquely label
each function. (Standard binary labels can be compressed somewhat,
but lexicographically ordered bit labels can be used, which cannot be
compressed, so that the complexity is still O(N lg N).)

To construct a lookup table or a full enumeration of any permutation
of N elements requires O(N lg N) bits, since there are N elements and
lg N bits are needed to distinguish each element. Thus, most of these
functions have exponential description.

This is, of course, one of the major concerns about No Free Lunch
theorems. Do No Free Lunch theorems really apply to sets of func-
tions which are of practical interest? Yet this same concern is often
overlooked when theoretical researchers wish to make mathematical ob-
servations about search. For example, proofs relating the number of
expected optima over all possible functions (Rana and Whitley 1998),
or the expected path length to a local optimum over all possible func-
tions (Tovey 1985) under local search are computed with respect to the
set of N ! functions.

Igel and Toussaint (2003) formalize the idea that if one considers all
the possible ways that one can construct subsets over the set of all possi-
ble functions, then those subsets that are closed under permutation are
a vanishing small percentage. This problem with this observation is that
the a priori probability of any subset of problems is vanishingly small–
including any set of applications we might wish to consider. On the
other hand, Droste et al. (2002) have also shown that for any function
for which a given algorithm is effective, there exist related functions for
which performance of the same algorithm is substantially worse. This is
expressed in the Almost No Free Lunch (ANFL) theorem:

ANFL Theorem: Let H be a randomized search strategy and f :

{0, 1}n → {0, 1, ..., N − 1}. Then there exists at least N2
n/3

−1 func-
tions f∗ : {0, 1} → {0, 1, ..., N} which agree with f on all but at most
2n/3 inputs such that H does find the optimum of f* within 2n/3 steps

Complexity and No Free Lunch 17

with a probability bounded above by 2−n/3. Exponentially many of these
functions have the additional property that their evaluation time, circuit
size representation, and Kolmogorov complexity is only by an additive
term of O(n) larger than the corresponding complexity of f.

Even search algorithms designed for specific problem classes could be
subject to Almost NFL kinds of effects.

No Free Lunch and NP -Completeness

No Free Lunch has not been proven to hold over the set of problems
in the complexity class NP . This is rather obvious if one considers the
following: if No Free Lunch holds for any NP -Complete problem, then
it immediately follows that no algorithm is better than random enu-
meration on the entire class of NP -Complete problems (because of the
existence of a polynomial-time transformation between any two NP -
Complete problems). However, this would also prove that P 6= NP ,
since it would prove that no algorithm could solve all instances of an
NP -Complete problem in polynomial time. This means that proofs con-
cerning No Free Lunch do not apply to NP -Complete problems unless
the proofs also show (perhaps implicitly) that P 6= NP .

The description length of all NP -Complete problems must also be
polynomial, since we need to “reformulate” one problem into another in
polynomial time. This means that an NP -Complete problem class (such
as NK-Landscapes, Kauffman 1989) cannot be used to generate all N !
functions of P (f) when f is a bijection, since on average the set of all
possible bijective functions over a set of co-domain values do not have
polynomial space descriptions.

The existence of ratio bounds for certain NP -Complete problems also
shows that NFL theorems do not hold for certain NP -Complete prob-
lems. For example, a greedy polynomial time approximate algorithm
exists for the Euclidean Traveling Salesman Problem which is guaran-
teed to yield a solution that is no worse than 2C, where C is the cost of
an optimal solution (Cormen et al. 1990). (In fact, even tighter bounds
exist.) Branch and bound algorithms (Horowitz and Sahni 1978) can
use this information to compute bounds such that no solution with a
cost greater than 2C is examined. Thus, the existence of a ratio bound
means that algorithms can select which performance vectors to explore,
and this excludes some search behaviors (i.e., performance vectors) that
are part of the permutation closure of the objective function.

18

Evaluating Search Algorithms

From a theoretical point of view, comparative evaluation of search
algorithms is a dangerous, if not dubious, enterprise. But the alternative
of testing is to give up and say that all algorithms are equal–which means
we have no way of recommending one algorithm over another when a
search method is required to solve a problem of practical interest. The
best we can do is build test functions that we believe capture some
aspects of the problems we actually want to solve. But this highlights a
critical question. Do benchmarks really test what we want to test? If an
algorithm does well on a very simple problem–such as a linear objective
function–is that good or bad? Many people have used the ONEMAX test
function for testing search algorithms that use a binary representation.
The objective function for ONEMAX is to maximize number of bits set
to 1 in a bit string. But should we really believe that an algorithm
that does well on ONEMAX generalizes to other problems of practical
interest? Theory would suggest extreme caution.

Each instance of an optimization problem has an associated objective
function. Let β represent a particular set of benchmark functions. NFL
implies that if algorithm K is better (on average) than algorithm Z on
the benchmark set β, then algorithm Z must be better (on average)
than K on the instances in P (β)− β. NFL theorems make it clear that
comparative evaluation is really a zero-sum game.

So what does it mean to evaluate an algorithm on a set of benchmarks
and compare it to another algorithm? Given the NFL theorems, com-
parison is meaningless unless we prove (which virtually never happens)
or assume (an assumption which is rarely made explicit) that the bench-
marks used in a comparison are somehow representative of a particular
subclass of problems.

Benchmarks are commonly used for testing both optimization and
learning algorithms. Often, the legitimacy of a new algorithm is “es-
tablished” by demonstrating that it finds better solutions than existing
algorithms when evaluated on a particular benchmark or collection of
benchmarks. Alternatively, the new algorithm may find high-quality
solutions faster than existing algorithms for one or more benchmarks.

What are some of the dangers associated with the use of benchmarks?
Algorithms can be tuned such that they perform well on specific bench-
marks, but fail to exhibit good performance on benchmarks with dif-
ferent characteristics. More importantly, there is no guarantee that
algorithms developed and evaluated using synthetic benchmarks will
perform well on more realistic problem instances. Furthermore, sim-

Complexity and No Free Lunch 19

ple algorithms can often provide excellent performance on more realistic
benchmarks (Watson et al., 1999).

While the dangers associated with benchmarks are well-known, most
researchers continue to use benchmarks to evaluate their algorithms.
This is because researchers have few alternatives. How can one algo-
rithm be compared to another without some form of evaluation? Eval-
uation requires the use of either synthetic or real-world benchmarks,
or at least the use of test problems drawn from problem generators so
that algorithms can be compared on sets of problem instances that have
similar characteristics. Researchers who develop new algorithms and do
not demonstrate their merit through some form of comparative testing
can expect their work to be ignored. The compulsion to develop “a new
method” has resulted in the literature being full of new algorithms, most
of which are never used or analyzed by anyone other than the researchers
who created them.

Hooker (1995) discusses the “evils of competitive testing” and points
out the difficulty of making fair comparisons of algorithm performance.
Implementation details can significantly impact algorithm performance,
as can the values selected for various tuning parameters. Some algo-
rithms have been refined for years. Other algorithms have become so
specialized that they only work well on specific benchmarks. Hooker ar-
gues that the evaluation of algorithms should be performed in a more sci-
entific, hypothesis-driven manner. Barr et al. (1995) suggest guidelines
for the experimental evaluation of heuristic methods. Such guidelines
are for the most part useful, although rarely followed.

While evaluation is difficult, it is also important. Too many exper-
imental papers (especially conference papers) include no comparative
evaluation; researchers may present a hard problem (perhaps newly
minted) and then present an algorithm to solve the problem. The ques-
tion as to whether some other algorithm could have done just as well (or
better!) is ignored.

4. Conclusions

As in many other areas of life, extreme reactions are likely to lead to
extreme errors. This is also true for No Free Lunch. It is clearly wrong
to say “NFL doesn’t apply to real world problems, so who cares?” It is
also an error to give up on building general purpose search algorithms.

A careful consideration of the “No Free Lunch” theorems forces us
to ask what set of problems we want to solve and how to solve them.
More than this, it encourages researchers to consider more formally
whether the methods they develop for particular classes of problems ac-

20

tually are better than other algorithms. This may involve proofs about
performance behavior. In some ways, we are just starting to ask the
right questions. And yet, researchers working in complexity and NP -
Completeness have long been concerned with algorithm performance for
particular classes of problems.

Few researchers have attempted to formalize their assumptions about
search problems and search algorithm behavior. But if we fail to do
this, then we become trapped in a kind of empirical and experimental
treadmill that leads nowhere: algorithms are developed that work on
benchmarks, or on particular applications, without any evidence that
such methods will work on the next problem we might wish to solve.

5. Tricks of the Trade

No Free Lunch is a theoretical result about search algorithms. As
such there are no specific methods or algorithms that directly follow
from NFL. Several pieces of advice do follow from No Free Lunch.

1 In most practical applications one must trade-off generality and
specificity. Using simpler off-the-shelf search methods reduces time
effort and cost. Simple but reasonably effective search methods,
even when implemented from scratch, are often easier to work with
than complex methods. Using custom designed search methods
that only work for one application will usually yield better results:
but generally, one must ask how much time and money one wishes
to spend and how good does the solution need to be.

2 Exploit problem specific information when it is simple to do so.
Most NP -Complete problems, for example, have been studied for
years and there are many problem specific methods that yield good
near-optimal solutions.

3 For discrete parameter optimization problems, one has a choice of
using standard binary encodings, Gray codes or real valued repre-
sentations. Gray codes are often better than binary codes when
some kind of neighborhood search is used either explicitly (e.g.,
local search) or implicitly (e.g., via a random bit flip operator).
The use of Gray codes versus real-valued is less clear, and depends
on other algorithm design choices.

4 Don’t assume that a search method that does well on classic bench-
marks will work equally well on real-world problems. Sometimes
algorithms are overly tuned to do well on benchmarks and in fact
don’t work well on real-world applications.

Complexity and No Free Lunch 21

6. Current and Future Research Directions

Another body of literature asks the question “What representation
is best?” Of course, the answer is that other No Free Lunch theorems
show that in the general case there is no best representation. For dis-
crete parameter optimization problems, one might use standard binary
representations, or standard binary-reflect Gray codes. Or one might
use real-valued floating point representations.

Another area of research is the construction of algorithms that can
provably beat random enumeration on specific subsets of problems. Chris-
tensen and Oppacher (2001) prove that No Free Lunch does not hold
over sets of functions that can be described using polynomials of a sin-
gle variable of bounded complexity. This also includes Fourier series of
bounded complexity. (Also see a 2000 paper by English about polyno-
mials and No Free Lunch). They define a minimization algorithm called
“SubMedian-Seeker.” The algorithm assumes that the target function, f ,
is 1-dimensional and bijective and that the median value of f is known
and denoted by med(f). The actual performance depends on M(f),
which measures the number of submedian values of f that have suc-
cessors with supermedian values. They also define Mcrit as the critical
value of M(f) such that when M(f) < Mcrit SubMedian-Seeker is better
than random search. Christensen and Oppacher then prove:

If f is a uniformly sampled polynomial of degree at most k and if Mcrit >
k/2 then SubMedian-Seeker beats random search.

The “SubMedian-Seeker” is not a practical algorithm. The impor-
tance of Christensen and Oppacher’s work is that it sets the stage for
proving there are algorithms that are generally (if perhaps weakly) effec-
tive over a very broad class of interesting, nonrandom functions. More
recently Whitley, Rowe and Bush (2004) have generalized these con-
cepts to outline conditions which allow local neighborhood bit climbers
to display “SubTheshold-Seeker Behavior” and then show that in prac-
tice such algorithms spend most of their time exploring the best points
in the search space on common benchmarks and are obviously better
than random search.

7. Additional Sources of Information about
Complexity and No Free Lunch

The classic textbook “Introduction to Algorithms” by Cormen et al.,
has a very good discussion of NP -Completeness and approximate algo-
rithms for some well-studied NP -hard problems.

22

Joe Culberson’s 1998 paper “On the Futility of Blind Search: An
Algorithmic View of No Free Lunch” helps to relate complexity theory
to No Free Lunch in simple and direct terms.

Tom English has contributed several good papers to the NFL dis-
cussion (English 2000a, 2000b). C. Igel and M. Toussaint have also
contributed notable papers. Chris Schumacher’s 2000 Ph.D. disserta-
tion, Fundamental Limitations on Search Algorithms, deals with various
issues related to No Free Lunch.

Recent work by Ingo Wegener and colleagues have focused on showing
when particular methods work on particular general classes of problems,
(e.g., Storch and Wegener 2003, Fischer and Wegener 2004) or showing
the inherent complexity of particular problems for black-box optimiza-
tion (Droste et al. 2003).

References

R. Barr, B. Golden, J. Kelly, M Resende, and Jr. W. Stewart. Designing
and Reporting on Computational Experiments with Heuristic Meth-
ods. Journal of Heuristics, 1:9–32, 1995.

S. Christensen and F. Oppacher (2001). What can we learn from No
Free Lunch? In Genetic and Evolutionary Computation Conference,
GECCO-01, pages 1219–1226. Morgan Kaufmann, 2001.

S. Cook. The Complexity of Theorem Proving Procedures. In Third An-
nual ACM Symposium on Theory of Computing, pages 151–158. ACM,
1971.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
McGraw Hill, New York, 1990.

J. Culberson. On the Futility of Blind Search. Evolutionary Computa-
tion, 6(2):109–127, 1998.

S. Droste, T. Jansen, and I. Wegener. Perhaps not a free lunch, but
at least a free appetizer. In Genetic and Evolutionary Computation
Conference, GECCO-99, pages 833–839. Morgan Kaufmann, 1999.

S. Droste, T. Jansen, and I. Wegener. Optimization with randomized
search heuristics; the (A)NFL theorem, realistic scenarios and difficult
functions. Theoretical Computer Science, 2002.

S. Droste, T. Jansen, K. Tinnefeld, and I. Wegener. A New Framework
for the Valuation of Algorithms for Black-Box Optimization. Founda-
tions of Genetic Algorithms. Morgan Kaufmann, 2003.

T. English. Practical Implications of New Results in Conservation of
Optimizer Performance. In, Parallel Problem Solving from Nature, 6,
pages 69–78. Springer, 2000.

Complexity and No Free Lunch 23

T. English. Optimization is Easy and Learning is Hard In the Typical
Function. Proc. 2000 Congress on Evolutionary Computation (CEC
2000) , pages 924–931, 2000.

S. Fischer and I. Wegener. The Ising Model on the Ring: Mutation ver-
sus Recombination. In Genetic and Evolutionary Computation Con-
ference, GECCO-2004, pages 1113–1124. Springer, 2004.

G. Rawlins, Ed., Foundations of Genetic Algorithms. Morgan Kaufmann,
1991.

J.N. Hooker. Testing Heuristics: We Have it All Wrong. Journal of
Heuristics, 1:33–42, 1995.

E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Com-
puter Science Press, 1978.

C. Igel and M. Toussaint. On classes of functions for which No Free
Lunch results hold. Information Processing Letters, 2003.

C. Igel and M. Toussaint. A no-free-lunch theorem for non-uniform dis-
tributions of target functions. Journal of Mathematical Modeling and
Algorithms, 2004.

S.A. Kauffman. Adaptation on Rugged Fitness Landscapes. In D.L.
Stein, editor, Lectures in the Science of Complexity, pages 527–618.
Addison-Wesley, 1989.

N.J. Radcliffe and P.D. Surry. Fundamental limitations on search algo-
rithms: Evolutionary computing in perspective. In J. van Leeuwen, ed-
itor, Lecture Notes in Computer Science 1000. Springer-Verlag, 1995.

S. Rana and D. Whitley. Representations, Search and Local Optima. In
Proceedings of the 14th National Conference on Artificial Intelligence
AAAI-97, pages 497–502. MIT Press, 1997.

S. Rana and D. Whitley. Search, representation and counting optima.
In L. Davis, K. De Jong, M. Vose, and D. Whitley, editors, Proc IMA
Workshop on Evolutionary Algorithms. Springer-Verlag, 1998.

C. Schumacher. Fundamental Limitations of Search. PhD thesis, Univer-
sity of Tennessee, Department of Computer Sciences, Knoxville, TN,
2000.

C. Schumacher, M. Vose, and D. Whitley. The No Free Lunch and Prob-
lem Description Length. In Genetic and Evolutionary Computation
Conference, GECCO-2001, pages 565–570. Morgan Kaufmann, 2001.

T. Storch and I. Wegener. Real Royal Road Functions for Constant Pop-
ulation Size. In Genetic and Evolutionary Computation Conference,
GECCO-2003, pages 1406–1417. Springer, 2003.

T. Sudcamp. Languages and Machines, 2nd edition. Addison-Wesley,
1997.

Craig A. Tovey. Hill climbing and multiple local optima. SIAM Journal
on Algebraic and Discrete Methods, 6(3):384–393, July 1985.

24

J.P. Watson, L. Barbulescu, D. Whitley, and A. Howe. Algorithm Perfor-
mance and Problem Structure for Flow-shop Scheduling. In Proceed-
ings of the Sixteenth National Conference on Artificial Intelligence,
1999.

D. Whitley. A Free Lunch Proof for Gray versus Binary Encodings.
In Genetic and Evolutionary Computation Conference, GECCO-99,
pages 726–733. Morgan Kaufmann, 1999.

D. Whitley. Functions as Permutations: Regarding No Free Lunch, Walsh
Analysis and Summary Statistics. In Schoenauer, Deb, Rudolph, Lut-
ton, Merelo, and Schwefel, editors, Parallel Problem Solving from Na-
ture, 6, pages 169–178. Springer, 2000.

D. Whitley, S. Rana, and R. Heckendorn. Representation Issues in Neigh-
borhood Search and Evolutionary Algorithms. In C. Poloni D. Quagliarella,
J. Periaux and G. Winter, editors, Genetic Algorithms and Evolution
Strategies in in Engineering and Computer Science, pages 39–57. John
Wiley and Sons, 1997.

D. Whitley, J. Rowe, and K. Bush. Subthreshold Seeking Behavior and
Robust Local Search. In Genetic and Evolutionary Computation Con-
ference, GECCO-2004, pages 282–293. Springer, 2004.

David H. Wolpert and William G. Macready. No free lunch theorems for
search. Technical Report SFI-TR-95-02-010, Santa Fe Institute, July
1995.

David H. Wolpert and William G. Macready. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary Computation,
4:67–82, 1997.

